Numerical ranges of an operator on an indefinite inner product space
نویسندگان
چکیده
منابع مشابه
Ela Numerical Ranges of an Operator on an Indefinite Inner Product Space
For n n complex matrices A and an n n Hermitian matrix S, we consider the S-numerical range of A and the positive S-numerical range of A de ned by WS(A) = hAv; viS hv; viS : v 2 I Cn; hv; viS 6= 0
متن کاملNumerical ranges of an operator on an indefinite inner product space
For n n complex matrices A and an n n Hermitian matrix S, we consider the S-numerical range of A and the positive S-numerical range of A de ned by WS(A) = hAv; viS hv; viS : v 2 I Cn; hv; viS 6= 0
متن کاملOn Generalized Numerical Ranges of Operators on an Indefinite Inner Product Space
In this paper, numerical ranges associated to operators on an indefinite inner product space are investigated. Boundary generating curves, corners, shapes and computer generations of these sets are studied. In particular, the MurnaghanKippenhahn theorem for the classical numerical range is generalized.
متن کاملOn the Geometry of Numerical Ranges in Spaces with an Indefinite Inner Product
Geometric properties of the numerical ranges of operators on an indefinite inner product space are investigated. In particular, classes of matrices are presented such that the boundary generating curves of the J-numerical range are hyperbolical. The curvature of the J-numerical range at a boundary point is studied, generalizing results of Fiedler on the classical numerical range.
متن کاملRemarks on generalized numerical ranges of operators on indefinite inner product spaces
Numerical ranges associated to operators on an indefinite inner product space are investigated. Boundary generating curves, shapes, corners and computer generation of these sets are studied. Some final remarks present an interesting relation between these sets and numerical ranges of operators arising in quantum mechanics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 1996
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1000